怎么求3X3矩阵的行列式
2022-12-10 11:11:19 admin 【 字体:大 中 小 】
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。
方法1方法1 的 2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|。下面是我们将使用的一般矩阵表示法,以及示例矩阵:
2选择单行或单列。这将是引用行或列。不管你选哪一行或列,结果都是一样的。现在,只选择第一行。稍后,我们将给出一些关于如何选择最简单的计算方法的建议。- 我们选择示例矩阵A的第一行,圈出1 5 3。一般来说,圈出11 a12 a13。
WWw.JmTET。cOm
3划掉第一个元素的行和列。查看圈出的行或列,并选择第一个元素。通过它的行和列画线。剩下四个数字。我们把它看成一个2×2矩阵。
- 在本例中,引用行是1 5 3。第一个元素在第1行和第1列。划掉第一行和第一列。把剩下的元素写成2×2矩阵:
1 5 3
2 4 1
4 6 2
4求出2x2矩阵的行列式。记住,这个矩阵5将结果乘以你选择的元素。记住,当你决定划去哪一行和哪一列时,是从引用行(或列)中选择了一个元素。将这个元素乘以刚刚计算出的2x2矩阵的行列式。
- 在本例中,我们选择了a11,值为1。将它乘以-34(2x2矩阵的行列式),得到1*-34 =
-34。
6确定答案的正负号。接下来,将答案乘以1或-1来得到所选元素的
代数余子式。你用哪一个取决于元素在3x3矩阵中的位置。记住这个简单的正负号图来找出哪个元素是正,哪个元素是负:
- + - +
- + -
+ - + - 由于我们选择了a11,用a +标记,将结果乘以1。(也就是说,不用管它)。答案还是
-34
。 - 或者,你可以用公式(-1)来计算正负号,其中i和j是该元素的行数和列数。
7对引用行或列中的第二个元素重复这个过程。返回到初始的3x3矩阵,包含你之前圈出的行或列。对这个元素重复相同的过程:
WWw.JmTET。cOm
划掉这个元素所在的行和列。在本例中,选择元素a12(值为5)。划掉第一行(1 5 3)和第二列8对于三个元素重复这个操作。你还要找出一个余子式。计算引用行或列中第三项的i。在本例中,下面是计算a13余子式的简要描述:- 划掉第1行和第3列,得到
WWw.JmTET。cOm
9将三个结果加起来。这是最后一步。你已经算出来三个代数余子式,每个分别对应单行或单列中的每个元素。把它们加起来,你就得到了3x3矩阵的行列式。- 在本例中,行列式为
-34
+ 120
+ -12
= 74
。
方法2方法2 的 2:简化问题1选择0最多的引用行或列。记住,你可以选择任意行或列作为引用。不管你选哪一个,结果都是一样的。如果你选择一个带有零的行或列,只需要计算非零元素的代数余子式。原因如下:
- 假设你选择第2行,包含元素a21、a22和23。要解决这个问题,我们要看三个不同的2x2矩阵。我们把它们叫做A21、A22和A23。
- 3x3矩阵的行列式是a21|A21| - a22|A22| + a23|A23|。
- 如果a22和a23都为0,公式就变成a21|A21| - 0*|A22| + 0*|A23| = a21|A21| - 0 + 0 = a21|A21|。现在我们只需计算一个元素的代数余子式。
WWw.JmTET。cOm
2利用行加法使矩阵更简单。如果你把一行的值加到另一行,矩阵的行列式不变。列也是如此。你可以重复这样操作,或者在加之前将值乘以一个常数,从而使矩阵有尽可能多的0。这样可以节省很多时间。
- 例如,假设你有一个3×3的矩阵:
3学习三角矩阵的快捷方法。在这些特殊情况下,行列式就是主对角线上的元素的乘积,从左上角的a11到右下角的a33。我们讨论的仍然是3x3矩阵,但是“三角”矩阵有非零值的特殊模式:- 上三角矩阵:所有非零元素都在主对角线上或主对角线之上。下面全部是0。
- 下三角矩阵:所有非零元素都在主对角上或主对角之下。
- 对角矩阵:所有非零元素都在主对角上。(上述矩阵的一个子集)
注意事项
1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|。下面是我们将使用的一般矩阵表示法,以及示例矩阵:
2选择单行或单列。这将是引用行或列。不管你选哪一行或列,结果都是一样的。现在,只选择第一行。稍后,我们将给出一些关于如何选择最简单的计算方法的建议。- 我们选择示例矩阵A的第一行,圈出1 5 3。一般来说,圈出11 a12 a13。
WWw.JmTET。cOm
3划掉第一个元素的行和列。查看圈出的行或列,并选择第一个元素。通过它的行和列画线。剩下四个数字。我们把它看成一个2×2矩阵。
4 1
6 2
4求出2x2矩阵的行列式。记住,这个矩阵5将结果乘以你选择的元素。记住,当你决定划去哪一行和哪一列时,是从引用行(或列)中选择了一个元素。将这个元素乘以刚刚计算出的2x2矩阵的行列式。
- 在本例中,我们选择了a11,值为1。将它乘以-34(2x2矩阵的行列式),得到1*-34 =
-34。
-34。
6确定答案的正负号。接下来,将答案乘以1或-1来得到所选元素的
代数余子式。你用哪一个取决于元素在3x3矩阵中的位置。记住这个简单的正负号图来找出哪个元素是正,哪个元素是负:
- + -
+ - +
-34
。7对引用行或列中的第二个元素重复这个过程。返回到初始的3x3矩阵,包含你之前圈出的行或列。对这个元素重复相同的过程:
WWw.JmTET。cOm
划掉这个元素所在的行和列。在本例中,选择元素a12(值为5)。划掉第一行(1 5 3)和第二列8对于三个元素重复这个操作。你还要找出一个余子式。计算引用行或列中第三项的i。在本例中,下面是计算a13余子式的简要描述:- 划掉第1行和第3列,得到
WWw.JmTET。cOm
9将三个结果加起来。这是最后一步。你已经算出来三个代数余子式,每个分别对应单行或单列中的每个元素。把它们加起来,你就得到了3x3矩阵的行列式。- 在本例中,行列式为
-34
+ 120
+ -12
= 74
。
- 划掉第1行和第3列,得到
WWw.JmTET。cOm
9将三个结果加起来。这是最后一步。你已经算出来三个代数余子式,每个分别对应单行或单列中的每个元素。把它们加起来,你就得到了3x3矩阵的行列式。
- 在本例中,行列式为
-34
+120
+-12
=74
。
- 在本例中,行列式为
1选择0最多的引用行或列。记住,你可以选择任意行或列作为引用。不管你选哪一个,结果都是一样的。如果你选择一个带有零的行或列,只需要计算非零元素的代数余子式。原因如下:
- 假设你选择第2行,包含元素a21、a22和23。要解决这个问题,我们要看三个不同的2x2矩阵。我们把它们叫做A21、A22和A23。
- 3x3矩阵的行列式是a21|A21| - a22|A22| + a23|A23|。
- 如果a22和a23都为0,公式就变成a21|A21| - 0*|A22| + 0*|A23| = a21|A21| - 0 + 0 = a21|A21|。现在我们只需计算一个元素的代数余子式。
WWw.JmTET。cOm
2利用行加法使矩阵更简单。如果你把一行的值加到另一行,矩阵的行列式不变。列也是如此。你可以重复这样操作,或者在加之前将值乘以一个常数,从而使矩阵有尽可能多的0。这样可以节省很多时间。
- 例如,假设你有一个3×3的矩阵:
3学习三角矩阵的快捷方法。在这些特殊情况下,行列式就是主对角线上的元素的乘积,从左上角的a11到右下角的a33。我们讨论的仍然是3x3矩阵,但是“三角”矩阵有非零值的特殊模式:
- 上三角矩阵:所有非零元素都在主对角线上或主对角线之上。下面全部是0。
- 下三角矩阵:所有非零元素都在主对角上或主对角之下。
- 对角矩阵:所有非零元素都在主对角上。(上述矩阵的一个子集)
注意事项
热门推荐
相关推荐
晒腊肉要晒到出油吗?腊肉晒到什么程度才行
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
永和豆浆粉有营养吗?有添加剂吗
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
晒腊肉要晒多久,晒腊肉滴出油好还是不滴油好
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
荣耀50一亿像素怎么调
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
腊八节喝腊八粥的寓意,腊八节有什么活动
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
熏腊肉有营养吗?熏腊肉有毒吗
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
燕窝过敏体质能吃吗?燕窝
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
腊八蒜用什么醋比较好,腊八蒜用的米醋是黑的吗
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
支气管炎怎么调理?支气管炎可以打新冠疫苗吗
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
蓝头鹦鹉的饲养方法,蓝头鹦鹉的价格
矩阵的行列式常用于微积分、线性代数和高等几何。求一个矩阵的行列式一开始可能会让人困惑,但只要做过几次后,你就会觉得并不是那么难。方法1方法1的2:求行列式1写出3×3矩阵。我们从3x3矩阵A开始,试着找出它的行列式|A|
大家都在看