怎么求等差数列的任意项
2023-05-06 22:59:57 admin 【 字体:大 中 小 】
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列1求得数列的公差。
2检查公差是否一致。只计算前两项的公差,不足以保证数列是等差数列。你需要确保整列数字的差值始终一致。。将数列中另外两个连续项相减,检查它们的差值。如果结果与另外一到两次的结果一致,那么它就很可能是等差数列。- 还是以数列
3用公差加上最后的已知项。知道公差后,求等差数列的下一项就非常简单了。只需用公差加上最后的已知项,就可以得出下一个数字。- 例如,在示例
1首先检查是否是等差数列。某些情况下,题目会给出一组缺少中间项的数字。和之前一样,首先你应该检查数列是否是等差数列。选择任意的连续两项数字,计算它们之间的差值。比较结果与数列中另外两个连续数字的差值。如果差值相等,那么你可以假设自己面对的是一个等差数列,然后继续使用本文的等差数列方法。- 例如,假设有一个数列
2用公差加上空格前的那一项。方法和求数列最后一项类似。找到数列中空格前的那一项。这是已知的“最后一个”数字。用公差加上该项,算出应该填入空格的数字。- 在当前示例中,
3用空格后的数字减去公差。为了确保答案正确,可以从另一个方向来进行检查。无论是正序还是倒序,等差数列应该都符合自身特点。如果从左到右需要逐项加4,那么反过来,从右到左就正好相反,需要逐项减4。- 在当前示例中,wwW。jmtEt。cOm
4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。- 在当前示例中,
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
3用公差加上最后的已知项。知道公差后,求等差数列的下一项就非常简单了。只需用公差加上最后的已知项,就可以得出下一个数字。- 例如,在示例
1首先检查是否是等差数列。某些情况下,题目会给出一组缺少中间项的数字。和之前一样,首先你应该检查数列是否是等差数列。选择任意的连续两项数字,计算它们之间的差值。比较结果与数列中另外两个连续数字的差值。如果差值相等,那么你可以假设自己面对的是一个等差数列,然后继续使用本文的等差数列方法。- 例如,假设有一个数列
2用公差加上空格前的那一项。方法和求数列最后一项类似。找到数列中空格前的那一项。这是已知的“最后一个”数字。用公差加上该项,算出应该填入空格的数字。- 在当前示例中,
3用空格后的数字减去公差。为了确保答案正确,可以从另一个方向来进行检查。无论是正序还是倒序,等差数列应该都符合自身特点。如果从左到右需要逐项加4,那么反过来,从右到左就正好相反,需要逐项减4。- 在当前示例中,wwW。jmtEt。cOm
4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。- 在当前示例中,
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
1首先检查是否是等差数列。某些情况下,题目会给出一组缺少中间项的数字。和之前一样,首先你应该检查数列是否是等差数列。选择任意的连续两项数字,计算它们之间的差值。比较结果与数列中另外两个连续数字的差值。如果差值相等,那么你可以假设自己面对的是一个等差数列,然后继续使用本文的等差数列方法。- 例如,假设有一个数列
2用公差加上空格前的那一项。方法和求数列最后一项类似。找到数列中空格前的那一项。这是已知的“最后一个”数字。用公差加上该项,算出应该填入空格的数字。- 在当前示例中,
3用空格后的数字减去公差。为了确保答案正确,可以从另一个方向来进行检查。无论是正序还是倒序,等差数列应该都符合自身特点。如果从左到右需要逐项加4,那么反过来,从右到左就正好相反,需要逐项减4。- 在当前示例中,wwW。jmtEt。cOm
4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。- 在当前示例中,
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
2用公差加上空格前的那一项。方法和求数列最后一项类似。找到数列中空格前的那一项。这是已知的“最后一个”数字。用公差加上该项,算出应该填入空格的数字。- 在当前示例中,
3用空格后的数字减去公差。为了确保答案正确,可以从另一个方向来进行检查。无论是正序还是倒序,等差数列应该都符合自身特点。如果从左到右需要逐项加4,那么反过来,从右到左就正好相反,需要逐项减4。- 在当前示例中,wwW。jmtEt。cOm
4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。- 在当前示例中,
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
3用空格后的数字减去公差。为了确保答案正确,可以从另一个方向来进行检查。无论是正序还是倒序,等差数列应该都符合自身特点。如果从左到右需要逐项加4,那么反过来,从右到左就正好相反,需要逐项减4。- 在当前示例中,wwW。jmtEt。cOm
4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。- 在当前示例中,
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
4比较结果。用左边项加公差和用右边项减公差算出来的两个结果应该相等。如果相等,说明你已经求得缺少项的值。如果不相等,则说明你需要检查自己的计算过程。题目中的数列可能并非等差数列。- 在当前示例中,
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
1确定数列的第一项。并非所有序列都以数字0或数字1开始。查看题中的数列,找到第一项。它是计算的起点,可以使用变量a(1)代表。- 面对等差数列问题时,经常会使用变量a(1)来指代数列的第一项。当然,你可以选择自己喜欢的任何变量,这并不会影响到结果。
- 例如,已知数列
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
2设公差为d。用上文所述方法求出数列的公差。在当前示例中,公差等于3使用显式公式。显式公式是一个代数方程,使用它来求等差数列的任意项时,你无须写出完整数列。等差数列的显式公式为4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
4填入已知信息解题。使用数列的显式公式,填入已知信息,求出需要的项。- 例如,在本示例中,
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
1对显式公式进行变形,求其他变量。使用显式公式和基础的代数知识,你可以算出等差数列的几个其他数值。显式公式的初始形式是wwW。jmtEt。cOm2求数列的第一项。已知等差数列的第50项为300,且每项比之前一项大7,即“公差”等于7,求序列第一项的值。使用变形后的显式公式来计算a1,求得问题的答案。- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
警告
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
注意事项
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
- 使用方程
3求数列的项数。假设你只知道等差数列的第一项和最后一项,需要求数列的项数。使用变形后的公式。
- 假设已知等差数列的第一项是100,公差为13。题目还告知最后一项是2,856。要计算数列的项数,可以用到的信息有a1=100,d=13,以及a(n)=2856。将这些值代入公式,得到。计算后,可得,等于212+1,即213。所以该序列有213项。
- 该序列可以写作100, 113, 126, 139… 2843, 2856。
- 数列有多种不同类型。不要假设所有数列都是等差数列。每次一定要检查至少两对数字,最好是三对或四对,来比较各对的公差。
- 记住,d可以是正数,也可以是负数,取决于它是相加还是相减。
警告
注意事项
热门推荐
相关推荐
晒腊肉要晒到出油吗?腊肉晒到什么程度才行
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
永和豆浆粉有营养吗?有添加剂吗
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
晒腊肉要晒多久,晒腊肉滴出油好还是不滴油好
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
荣耀50一亿像素怎么调
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
腊八节喝腊八粥的寓意,腊八节有什么活动
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
熏腊肉有营养吗?熏腊肉有毒吗
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
燕窝过敏体质能吃吗?燕窝
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
腊八蒜用什么醋比较好,腊八蒜用的米醋是黑的吗
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
支气管炎怎么调理?支气管炎可以打新冠疫苗吗
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
蓝头鹦鹉的饲养方法,蓝头鹦鹉的价格
等差数列是每一项与它前面一项的差等于一个常数的数列。例如,偶数列0,2,4,6,8{displaystyle0,2,4,6,8}1求得数列的公差。面对一组数字时,有时题目会告诉你它们是等差数列,而有时你必须自己认识到这一点。无论是哪种情况,
大家都在看